

Peplink Antenna Guide Theory, Application and Choosing the Right One

Peplink Mission

Unbreakable Connectivity

Today Agenda

Theory

- 1. Antenna types
- 2. Key parameters
- 3. Frequency and attenuation
- 4. Consideration criteria
- 5. Cables and Connectors

Applications

- 1. Typical applications
- Peplink antennas
- 3. Antenna combinations

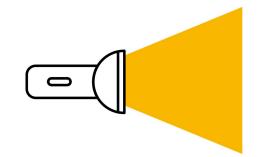
Q&A

Theory

Antennas

Types of Antennas

Omnidirectional Antennas


The state of the s	

Pros	Cons
- Dotatable platform	

- Rotatable platform
- Stable signal

Lots of noise

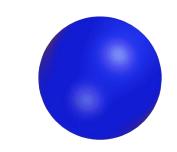
Directional Antennas

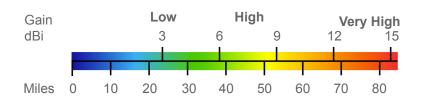
Pros	Cons
Longer rangeHigher gain	• Easily Misaligned

Omnidirectional Antennas

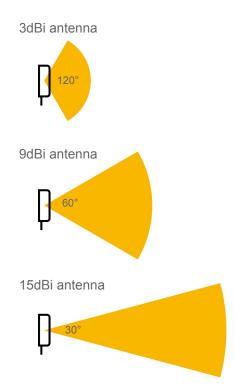
2dBi antenna

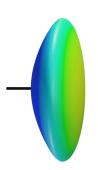
5dBi antenna

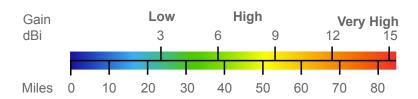



7dBi antenna

9dBi antenna

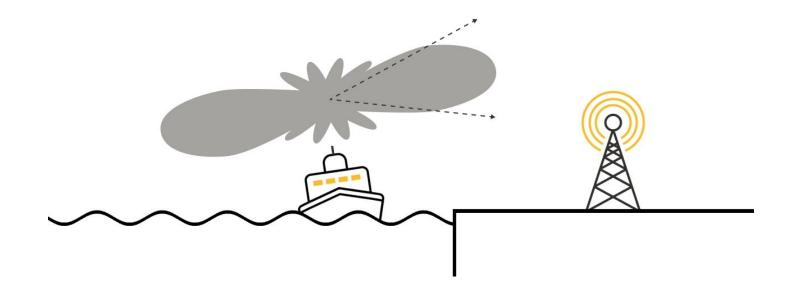






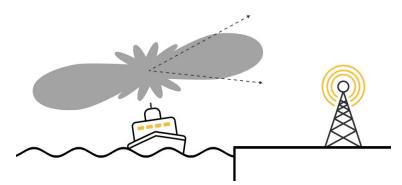
Directional Antennas

Gain

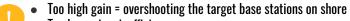

Types of Gain

Lower Gain Antenna

Higher Gain Antenna



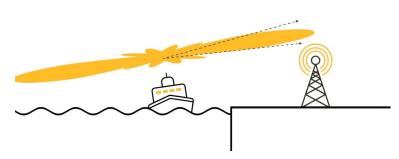
Gain


Types of Gain

Lower Gain Antenna

Antenna gain of 4 to 7dBi => 20° to 40° elevation beam-width => allow for 10° to 20° roll
either way

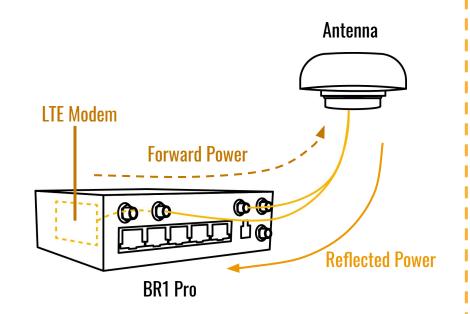
Pros	Cons
 Easier to install Less likely to be misaligned and lose signal Compact antenna housing 	• Shorter range



Too low gain = inefficiency

Higher Gain Antenna

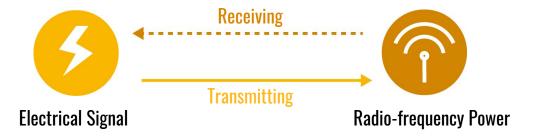
- A ship rolls to 10° on moderate seas, either way, sometime more (vessel and sea conditions)
- Antenna Gain of 9dBi => 12° Antenna elevation beam-width => allows for +6° roll and +6° roll either way


Pros	Cons
 Longer range 	May be misaligned and degrade signalLarger antenna housing

Voltage Standing Wave Ratio(VSWR) peplink

Reflection coefficient

- Indicates how much power is reflected from the antenna when the cellular router is transmitting
- Too high VSWR could permanently damage cellular router modem
- Common range 1.5 2.5



Efficiency

How good antenna converts the radio-frequency power to electrical signals and vice versa

- High gain + Good VSWR + Low efficiency
 - → poor signals
 - → low cellular router performance
- Typically efficiency varies from 30% 90%
 (depending on the frequency and antenna type)

Frequency and Attenuation

Available frequency bands

Simplified spectrum split into different bands for today LTE/5G networks.

Bands	Low band	Mid band	High band	High band (ISM)
Frequency [MHz]	600-960	1700-2700	3400-4200 (5G)	5100-6000 (5G)

Frequency and Attenuation

Factors mainly caused Signal Attenuation

Frequency

higher frequency == higher attenuation

Distance

longer distance == higher attenuation

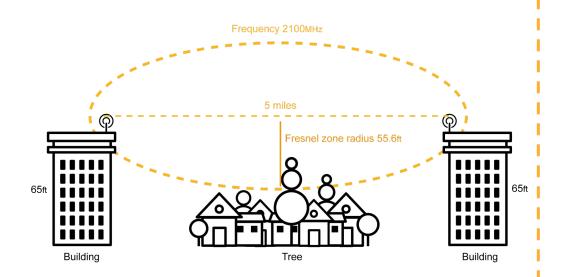
Physical Surroundings

e.g. hills, buildings, trees, walls

	Rural Low population	Suburban Medium population	Urban Dense population
Description	Low population. Typically farming or open fields.	Mildly populated areas. Typically small population with residential areas or small offices.	Densely populated areas. Typically with high rise buildings for residential or commercial use.
Frequency Bands	Mainly Low	Mix of Low and Mid	Mix Mid and High
	\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Signal attenuation	Low	Medium	High
Cell tower coverage	Large	Medium	Small
Cell tower density	Low	Medium	High
Throughput	Low	Medium	High
Cell tower density	Low	Medium	High

Consideration Criteria

Goal: get the best possible received signal



1. Line-of-sight and Fresnel Zone

 no objects in between (e.g. trees, buildings, hills, walls)

2. Cell tower congestion

 especially seen during rush hours or during weekend in certain areas(e.g. all users get back home)

Cables and Connectors

Routers

Subminiature type A (SMA)

ROUTER side

SMA Female Cellular/GPS

RP-SMA Female Wi-Fi

ANTENNA side

SMA Male Cellular/GPS

RP-SMA Male Wi-Fi

QMA

ANTENNA side

Male

ROUTER side

Female

Upgraded installation of MBX CAT-12, we have an adapter to convert from QMA to SMA - "QMA-to-SMA adapters (Pack of 4) ACW-816".

When upgrading from CAT12 to higher, 4 antennas are required for each LTE/5G modem instead of 2.

Cables and Connectors

Antennas and cables

Cables and Connectors

Antennas and cables

Cable type	Loss	Notes	Connector	Loss @ 900MHz 6 ft (2.1m)	Loss @ 2000MHz 6 ft (2.1m)	Loss @ 2500MHz 6 ft (2.1m)	Loss @ 5000MHz 6 ft (2.1m)
RG-174	Moderate	Flexible, 0.1" (2.5mm) in diameter, up to 2.7GHz	SMA or QMA	2.24 dB	3.43 dB	3.85 dB	-
CFD-200	Low	Flexible, 0.2" (5mm) in diameter, up to 6GHz	SMA or QMA	0.66 dB	0.99 dB	1.11 dB	1.73 dB
LMR-400	Very low	0.45" (10mm) in diameter, >6GHz	N-type	0.28 dB	0.42 dB	0.49 dB	0.84 dB
LMR-600	Ultra low	0.59" (15mm) in diameter, >6GHz	N-type	<0.07 dB	<0.07 dB	<0.07 dB	0.7 dB

1

RG-174 cable is used for GPS:

- Loss @ 1500MHz is ~2.63 dB

Applications

Typical Applications

Types of installation

e.g. offices, factories or homes

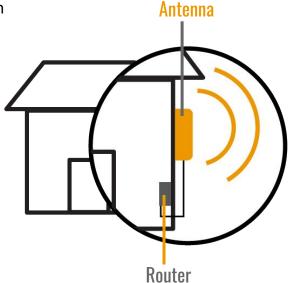
e.g. First Responder vehicles, trucks, buses, trains or RV

#

e.g. vessels

Hummingbird

Puma

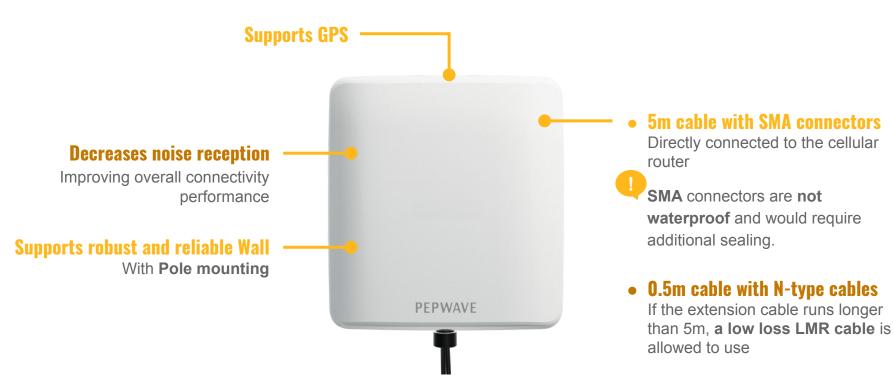

Stingray

Fixed Installations

e.g. offices, factories or homes

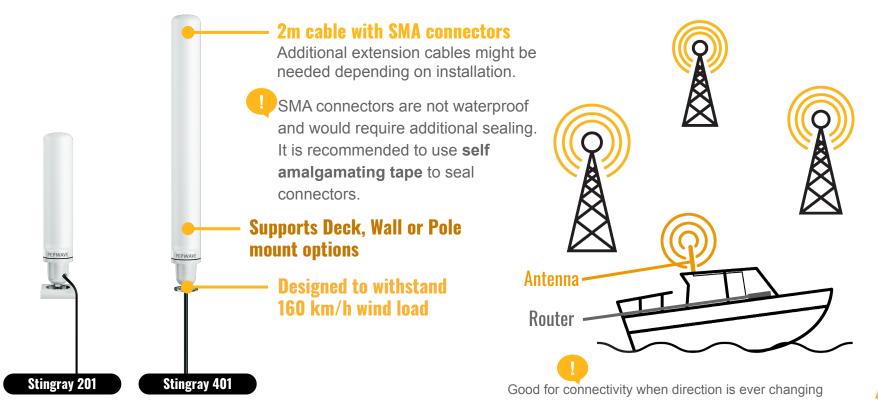
peplink

- Perfect for Rural and Suburban areas which need external antennas
- Compared to indoor antennas helps to:
 - Improve signal
 - Reduce noise
 - Increase overall performance



Hummingbird 201/401

Directional antenna

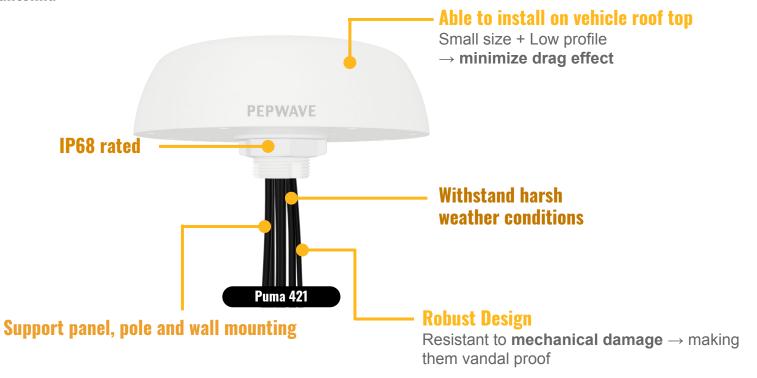


Stingray 201 / 401

Omnidirectional antenna

Mobile Installations

e.g. First Responder vehicles, trucks, buses, trains or RV

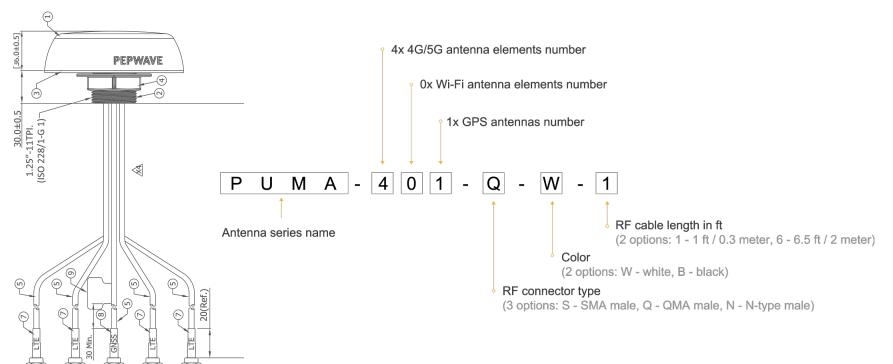


Puma 020 / 201 / 221 / 401 / 421

Omnidirectional antenna

Comparison Table

Peplink cellular antenna



	Puma Series	Stingray Series	Hummingbird
Models	421, 401, 221, 201	401, 201	201, 401
Туре	Omnidirectional	Omnidirectional	Directional
Applications	Mobile, Maritime, Fixed	Maritime, Fixed	Fixed
Bandwidth	Very wide (600-6000MHz)	Ultra wide (400-6000MHz)	Very wide (600-6000MHz)
Performance	Medium	High	Very high
Ruggedness	High	Medium	Medium
Active GPS	Yes	Yes	Yes

Numbering System

Peplink antenna

Cable and Connector

PEPWAV

Puma Series

Connectors:

- 1. 1ft (30cm) cable and QMA connectors (extension cable available)
- 2. 6.5 ft (2m) cable and QMA connectors (extension cable available)
- 3. 6.5 ft (2m) cable and SMA connectors

Extension Cables:

- 1. 4.5m SMA male to QMA (for LTE/5G)
- 2. 4.5m RP-SMA male to QMA (for Wi-FI)
- 3. 4.5m QMA to QMA (for LTE/5G)

Stingray Series

Connector:

6.5 ft (2m) cable and SMA connectors

Hummingbird Series

Connectors:

- 1. 16 ft (5m) cable and SMA connectors
- 2. 2 ft (0.5m) cable and N-type connectors

Puma Antenna

SKU combination

	Puma 401	Puma 221	Puma 020	Puma 421
SMA Connector	2m only	2m only	2m only	2m only
QMA Connector	0.3m or 2m	0.3m only	0.3m only	0.3m or 2m
Extension Cable	+4.5m	+4.5m	+4.5m	+4.5m

QMA connectors are designed as snap-on locking replacements for the standard SMA connectors. In the case of an extension, using a QMA connector is quick to install and prevents any interventions in the future in comparison to SMA or N-Type.

More About SMA and QMA

SMA

QMA

Pros	Cons
Affordable priceEasy to buy	 Takes time to attach Needs to double check connection

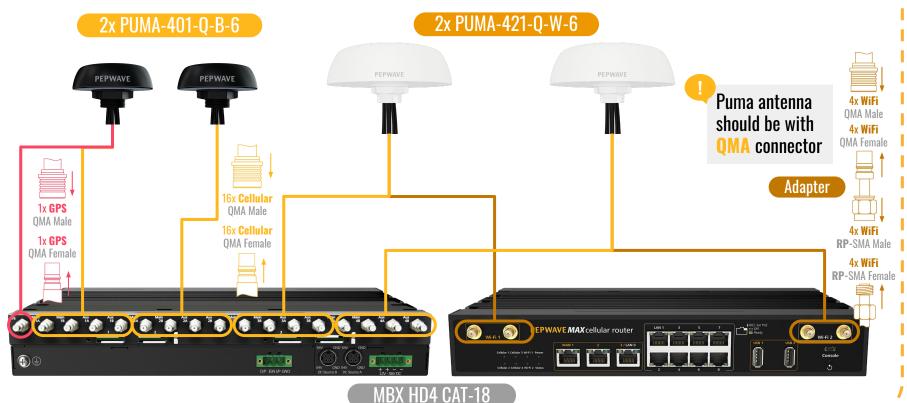
Pros	Cons
Can be plugged in very quickly Secure and reliable connection	ExpensiveNot common

Why CAT 18 / 5G have 4 connectors

MBX HD4 CAT-12

MBX HD4 CAT-18

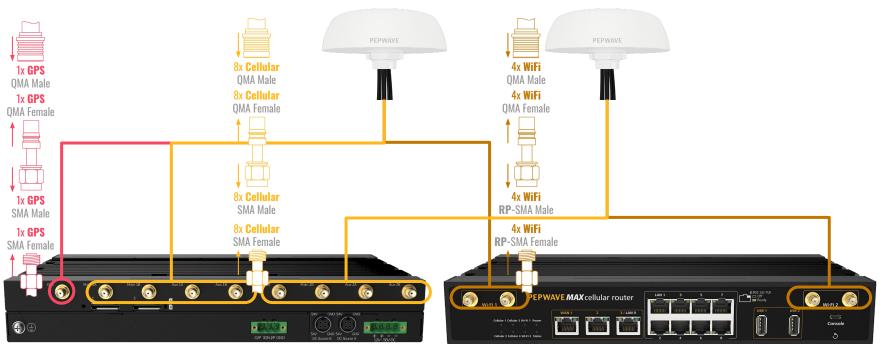
Puma antennas for Peplink routers


Peplink router	Puma model
MAX BR1 (Classic, Mini, Mini Core, MK2, Pro) MAX Transit Mini, MAX Transit	221
MAX Transit (CAT-18, Duo)	421
MAX HD2	421 + 020
MAX HD2 Mini	401
Balance 30	221 + 020

Peplink router	Puma model
MAX HD4	2x 401 + 2x 020 OR 2x 421
MAX HD4 MBX CAT-12	2x 401 + 2x 020 OR 2x 421
MAX HD4 MBX CAT-18 / 5G	2x 401 + 2x 421 (QMA Puma required)
SpeedFusion Engine	401 (adapter required)

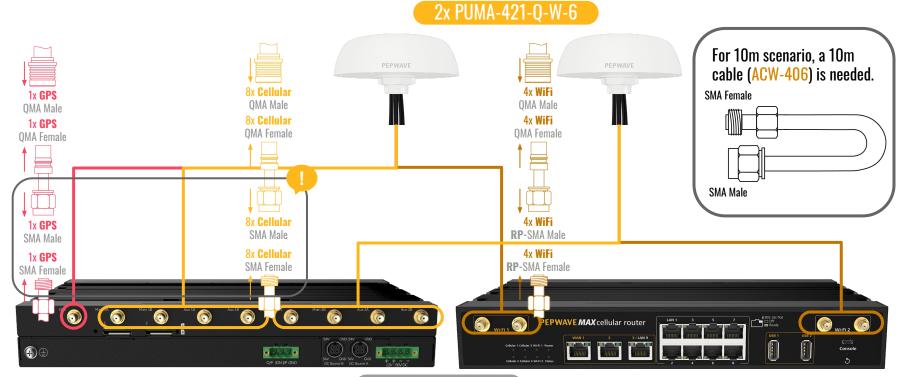
2m scenario

MBX connected directly to Puma antennas



4.5m scenario

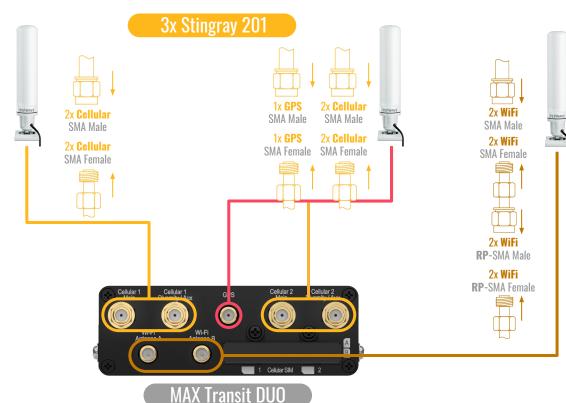
MBX connected to Puma antennas with 4.5m extension cables



MBX HD2 CAT-18

10m scenario

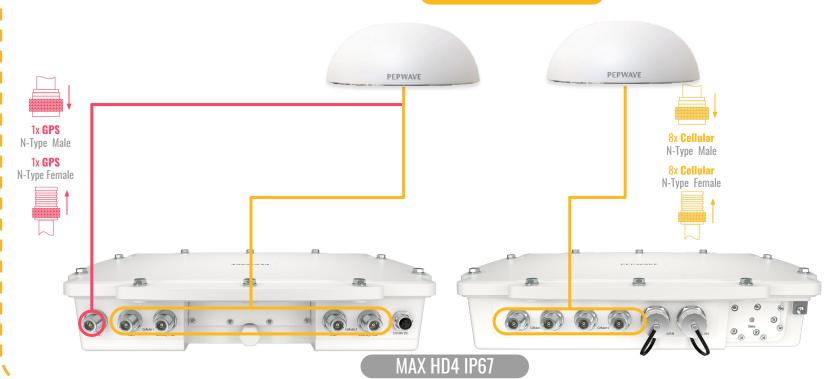
MBX connected to Puma antennas with 10m extension cables



MBX HD2 CAT-18

Examples Configuration

Transit DUO with Stingray antennas



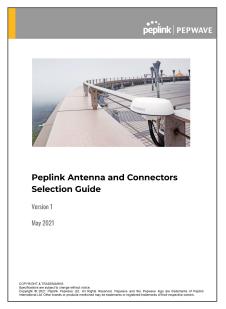
Examples Configuration

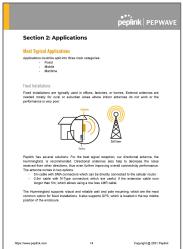
IP67 HD4 with ANT-100-LTE4-G-N

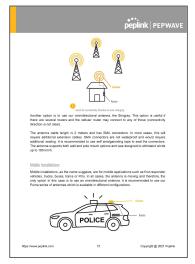
2x ANT-100-LTE4-G-N

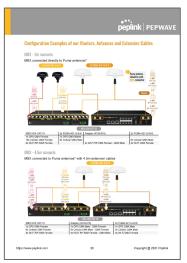
Causes of Low Signal

Cable & Antenna Installation Checklist




	Dos	Don'ts
Cables	No splittersShort cable runsHigh-quality cablesFew connectors	 Passive splitters Long cable runs Low-quality cables Lots of connectors
Antenna	 Good antenna placement (360° unobstructed) Good antenna selection 	Bad antenna placement (blind spots)Bad antenna selection


Resource Download


Peplink Antenna and Connectors Selection Guide

https://download.peplink.com/resources/peplink_antenna_and_connectors_selection_guide.pdf

Q & A

maritime@peplink.com

Stay Connected

www.peplink.com

FOLLOW US

<u>maritime@peplink.com</u>

https://www.youtube.com/peplink

https://forum.peplink.com